Combined Descriptors in Spatial Pyramid Domain for Image Classification

نویسندگان

  • Junlin Hu
  • Ping Guo
چکیده

Recently spatial pyramid matching (SPM) with scale invariant feature transform (SIFT) descriptor has been successfully used in image classification. Unfortunately, the codebook generation and feature quantization procedures using SIFT feature have the high complexity both in time and space. To address this problem, in this paper, we propose an approach which combines local binary patterns (LBP) and three-patch local binary patterns (TPLBP) in spatial pyramid domain. The proposed method does not need to learn the codebook and feature quantization processing, hence it becomes very efficient. Experiments on two popular benchmark datasets demonstrate that the proposed method always significantly outperforms the very popular SPM based SIFT descriptor method both in time and classification accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PLBP: An effective local binary patterns texture descriptor with pyramid representation

Local binary pattern (LBP) is an effective texture descriptor which has successful applications in texture classification and face recognition. Many extensions are made for conventional LBP descriptors. One of the extensions is dominant local binary patterns which aim at extracting the dominant local structures in texture images. The second extension is representing LBP descriptors in Gabor tra...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Bag of Features Model Using the New Approaches: A Comprehensive Study

The major challenge in content based image retrieval is the semantic gap. Images are described mainly on the basis of their numerical information, while users are more interested in their semantic content and it is really difficult to find a correspondence between these two sides. The bag of features (BoF) model is an efficient image representation technique for image classification. However, i...

متن کامل

Dense Image Representation with Spatial Pyramid VLAD Coding of CNN for Locally Robust Captioning

The workflow of extracting features from images using convolutional neural networks (CNN) and generating captions with recurrent neural networks (RNN) has become a de-facto standard for image captioning task. However, since CNN features are originally designed for classification task, it is mostly concerned with the main conspicuous element of the image, and often fails to correctly convey info...

متن کامل

New image descriptors based on color, texture, shape, and wavelets for object and scene image classification

This paper presents new image descriptors based on color, texture, shape, and wavelets for object and scene image classification. First, a new three Dimensional Local Binary Patterns (3D-LBP) descriptor, which produces three new color images, is proposed for encoding both color and texture information of an image. The 3D-LBP images together with the original color image then undergo the Haar wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1210.0386  شماره 

صفحات  -

تاریخ انتشار 2012